Test of independence for generalized Farlie–Gumbel–Morgenstern distributions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized McNemar’s Test for Homogeneity of the Marginal Distributions

In the matched-pairs data, McNemar’s test (McNemar, 1947) can be applied only to the case in which there are two possible categories for the outcome. In practice, however, it is possible that the outcomes are classified into multiple categories. Under this situation, the test statistic proposed by Stuart (1955) and Maxwell (1970) is useful, it is actually the generalization of the McNemar’s tes...

متن کامل

Characterizations of Certain Marshall-Olkin Generalized Distributions

Several characterizations of Marshall-Olkin generalized distributions, introduced by Gui (2013) and by Al-Saiari et al. (2014) are presented. These characterizations are based on: (i) a simple relationship between two truncated moments ; (ii) the hazard function.

متن کامل

A test of independence based on a generalized correlation function

In this paper, we propose a novel test of independence based on the concept of correntropy. We explore correntropy from a statistical perspective and discuss its properties in the context of testing independence. We introduce the novel concept of parametric correntropy and design a test of independence based on it. We further discuss how the proposed test relaxes the assumption of Gaussianity. ...

متن کامل

Contingency Tables: Test For Independence

• If we have data that are measurable (eg. height, time, weight, age, test score, etc.) then we can use the coefficient of correlation (r) to measure the strength of the linear association between two sets of data. • If we have two sets of rankings, then we can use Spearman's Rank Order Correlation Coefficient to measure the strength of the association between them. • However, both of these tec...

متن کامل

Testing for Serial Independence of Generalized Errors

In this paper, we develop a Neyman-type smooth test for the serial dependence of unobservable generalized errors. Our test is "nuisance parameter-free" in the sense that model parameter estimation uncertainty has no impact on the limit distribution of the test statistic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2008

ISSN: 0377-0427

DOI: 10.1016/j.cam.2006.11.029